
An Improved Base Algorithm for Online Discovery
of Flock Patterns in Trajectories

Pedro Sena Tanaka1, Marcos R. Vieira2, Daniel S. Kaster1

1 Department of Computer Science – University of Londrina, Brazil
pedro.stanaka@gmail.com, dskaster@uel.br

2 Big Data Lab – Hitachi America, Ltd. – R&D, USA
marcos.vieira@hal.hitachi.com

Abstract.

The high availability, cost, and usage of location-aware devices have increased the interest in the research of spatiotem-
poral patterns. The main goal in studying such patterns is to discover spatial relationships over time between moving
objects. Recent articles have proposed a wide variety of such patterns, among them is the flock pattern. This pattern
is defined as a set of moving objects with minimum size that stay together within a maximum distance for a continu-
ous period of time. Typical application examples are monitoring and surveillance, which rely on efficiently identifying
groups of suspicious people/vehicles in large spatiotemporal streaming data. Previous works proposed polynomial-time
algorithms to the flock pattern problem with fixed time duration. In this article, we propose a new online method, called
PSI, which is an improved base method to discover flock patterns that applies computational geometry techniques (e.g.,
plane sweeping) along with binary signatures and inverted indexes. In summary, plane sweeping speeds up the detection
of candidate groups in a particular timestamp, binary signatures allow saving costly set intersection operations, and
inverted indexes are employed to quickly compare candidate disks across timestamps. Using a variety of real-world
datasets and a large synthetic one we show that our proposed methods are efficient compared to state-of-the-art solu-
tion. In our experimental evaluation our proposed method achieved up to 69 times speedup compared to the previous
solution.

Categories and Subject Descriptors: H.2 [Database applications]: Data mining; Spatial databases and GIS

Keywords: moving objects, spatio-temporal patterns, flock pattern, plane sweep

1. INTRODUCTION

In the last decade, location-aware devices, such as GPS, RFID tags and smartphones, have become
ubiquitous as we observe large technology improvements as well as drops in prices over these last
years. This popularization in association with the ubiquitous use of location services, like Swarm1

and Waze2, are generating a continuous and fast paced growth of datasets in form of trajectories. A
trajectory is a sequence of recorded locations over time for a moving object. An interesting aspect
of trajectories is not only that the availability of large historical spatiotemporal data is increasing in
recent years, but also the rapid expansion of online services providing spatiotemporal streaming data.
One example of such services is AccuTracking3, which helps large retailer and shipping companies
(e.g., United States Postal Service (USPS)) to online track large vehicle fleets around the world.
Other examples are applications that provide location-based services to end-users, like Foursquare4

1www.swarmapp.com
2www.waze.com
3www.accutracking.com
4www.foursquare.com

This work has been supported by a CAPES scholarship.
Copyright c©2016 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016, Pages 52–67.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 53

and Waze, which both have millions of users reporting their location activities over time. Therefore,
there is an increasing need to develop efficient algorithms that can analyze those large repositories of
information.

Discovering patterns in large volumes of spatiotemporal streaming data is a very challenging task.
This is due to the fact that spatiotemporal patterns are generally defined as how the spatial relation-
ships among moving objects evolve over time. Although this analysis is computationally expensive,
it may reveal common, but important, behaviors involving the observed moving objects in a period
of time (e.g., migration patterns of wild animals, traffic patterns in road networks and suspicious
activities in urban areas).

Over the last few years, several spatiotemporal patterns were proposed, each of which describing
a different kind of behavior. Examples of such patterns include density-based patterns, such as
group [Wang et al. 2006; Li et al. 2013], swarm [Li et al. 2010] and convoy [Jeung et al. 2008]
patterns, and distance-based patterns, such as flock pattern [Benkert et al. 2008; Gudmundsson and
van Kreveld 2006; Vieira et al. 2009; Romero 2011; Arimura et al. 2014], which is the subject of our
work. A flock is defined by a set of minimum number of objects that are spatially “close together” for
a time duration. A few proposals on flock pattern focus on discovering maximal length (or duration)
flocks (e.g., [Gudmundsson and van Kreveld 2006; Arimura et al. 2014]), which are the minimum sets
of µ objects moving enclosed by a disk with diameter ε for the longest timespan. Other works provide
solutions to find flocks with fixed time duration, i.e., same as above but for at least δ time instants.
Methods to discover flocks can be classified as: (a) offline methods, e.g., [Al-Naymat et al. 2007;
Romero 2011], which require the entire data set be available beforehand in order to map/compute
statistics; and (b) online methods that report results as soon as they are discovered, thus they
can deal with spatiotemporal streaming data. The online detection of flock pattern has a wide range
of applications in different domains, ranging from real-time monitoring of suspicious activities to
observing animal migration and behavior. In order to fast act in response to observed activities in a
monitored environment, we need algorithms that quickly detect flock patterns from applications that
continuously consume large volumes of data from location-aware sensors. For example, a highway
patrol can assemble an emergency task force to intercept and punish the participants of a street race
after detecting a flock of vehicles moving in high speed. The state-of-the-art work on reporting flock
patterns with fixed time duration is [Vieira et al. 2009], which presents a baseline algorithm, called
Basic Flock Evaluation (BFE), and also several heuristics to improve the baseline algorithm.

In this article we present a novel method named PSI – Plane sweeping, Signatures and Indexes –
for online discovery of fixed time duration flock patterns. PSI significantly extends the BFE algorithm
by employing three new techniques: (1) plane sweeping to quickly detect candidate flock groups in
a particular time instant; (2) binary signatures to allow reducing the number of set comparisons
by pruning subsets of candidates in a given time instance; and (3) inverted index to quickly check
when a candidate disk in the current timestamp follows any partial flock in a previous time instant.
To the best of our knowledge, our work is pioneer in applying the above techniques to the online flock
pattern problem.

This article extends the previous version [Tanaka et al. 2015] by including further details regarding
the main aspects of our proposal and an improved evaluation of its behavior. This new evaluation is
enriched with additional experiments to test our method against a large synthetic dataset to check its
scalability and with new analysis of how the spatial distribution of the data sets affects its performance.
Such analysis in light of details in implementation level of our method allows a deeper understanding
of our results as well as it helps to elucidate in which situations our method’s underlying techniques
may be successfully employed to discover other spatiotemporal patterns. We show in our experiments
that our proposed PSI algorithm consistently outperformed the baseline method BFE, regarding both
real-world and synthetic data sets: it achieved up to 69x speedup in the experiments. An important
observation is that our method could leverage the heuristics used to extend BFE [Vieira et al. 2009]

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

54 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

to potentially achieve even higher performance improvements. We are exploring these extensions as
part of our future work.

The remainder of this article is organized as follows: Section 2 introduces the flock pattern problem
and discusses related work. Section 3 presents the BFE algorithm and the plane sweeping, which are
foundations of our work. Section 4 describes our new proposed PSI algorithm to find flock patterns,
which combines plane sweeping technique, binary signatures and inverted index; Section 5 presents
extensive performance evaluation of our proposed algorithms and previous work along with a thorough
analysis of data skewness impact. Section 6 concludes the article and summarizes future work.

2. PROBLEM STATEMENT AND RELATED WORK

2.1 Flock Pattern Problem

Common to all variations in the literature, the flock pattern is the problem of identifying all sets of
trajectories that stay “close together” during a time period. This pattern enforces that there must
be no pair of elements in a flock which are “farther” from each other than a given distance threshold
during the flock’s lifespan. Therefore, it is known as a disk-based spatiotemporal pattern. In this
article we employ the definition for the flock pattern introduced by Vieira et al. [2009], in which the
lifespan of the pattern is fixed. The property of closeness can be depicted by a disk of a given diameter
ε that covers all objects belonging to a flock in all timestamps during a period. The pattern is formally
defined as follows.

Definition 2.1 Flock pattern. Let T be a set of trajectories, µ > 1 be a minimum number of tra-
jectories (µ ∈ N), ε > 0 be a distance threshold regarding a distance metric d (ε ∈ R+) and δ > 1 be
a minimum number of time instances (δ ∈ N). A Flock(µ, ε, δ) pattern reports a set F containing all
the flocks fk, which are sets of maximal size such that: for each fk ∈ F , the number of trajectories is
greater than or equal to µ and there exist δ consecutive timestamps tj , . . . , tj+δ−1 in which there is
a disk of center ctik and diameter ε that covers all trajectories of f tik , which is the flock fk in time ti,
j ≤ i ≤ j + δ − 1.

Figure 1 shows an example of flock pattern with two flocks, each containing three moving objects.
One flock is formed by trajectories {T1, T2, T3} covered by disks labeled according to their centers
{c11, c21, c31}, where each cji is the center of a disk of the flock i in the timestamp j. The second flock
is composed by trajectories {T4, T5, T6} covered by disks centered on {c22, c32, c42}. It is important to
note two properties in flock pattern: (1) in order to cover all trajectories, the center of the disks can
freely move in the spatial domain; and (2) centers do not necessarily coincide with an object location
in a specific time instant. These two properties make the problem of discovering flock patterns very
challenging, as there exist an infinite number of spatial positions to place the disk center at each time
instance.

2.2 Related Work

Since the work that first presented the flock pattern problem [Laube and Imfeld 2002], several others
have followed addressing variations of the problem. Gudmundsson et al. [2004] define the flock pattern
problem by a set of trajectories moving in the same direction for a single timestamp. Clearly, this
definition cannot find more complex and interesting flock patterns that evolve over time. Other
variations have followed by introducing a pattern that happen during a time window, which can be
either of fixed size (as in Definition 2.1) or maximal size. Existing algorithms can also be classified in
offline methods, which require the entire historical data set to be loaded to work, and online methods
that are able to work both with historical and streaming data.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 55

Fig. 1. Example of flock pattern: flocks {T1, T2, T3} and {T4, T5, T6} from timestamps 2 to 4 and 3 to 5, respectively.

Several different solutions have been proposed to discover flock patterns. The proposed solutions
range from mapping of trajectories to a high dimensional space (e.g. [Benkert et al. 2008]), passing
through pure spatiotemporal approaches (e.g. [Vieira et al. 2009]), to mapping of trajectories to
transactions([Romero 2011]). Regarding mapping-based approaches, Benkert et al. [2008] proposed
to first map polylines representing trajectories to points in a high dimensional space, and then to search
for fixed size flocks in the mapped space. Similarly, Al-Naymat et al. [2007] employ dimensionality
reduction technique (Random Projection [Bingham and Mannila 2001]) to report flocks. The main
reason for the mapping is to avoid the need to keep track of all candidate disks in different time
instances. Nonetheless, due to the high dimensional space mapping the data suffers from degeneration
making the answers reported by the methods to be approximations. Other methods that use this kind
of technique also have this limitation (e.g., [Gudmundsson et al. 2008; Gudmundsson and van Kreveld
2006; Benkert et al. 2006; 2008]).

A problem slightly different from Definition 2.1 is the Maximal Duration (or Length) Flock Pattern,
which does not have a defined time window (i.e., no definition of δ parameter). In [Turdukulov et al.
2014; Romero 2011; Rosero and Romero 2014] it was proposed the LCM_Flock algorithm to report
maximal duration flocks based on a frequent pattern mining approach. This approach transforms the
input historical trajectory data set to a transactional one, which is then used in the LCM algorithm
(Linear time Closed itemset Miner) [Uno et al. 2005]. A second class of algorithm is Flock Pattern
Miner (FPM) [Arimura et al. 2014; Geng et al. 2014], which was the first work to address the problem
of enumerating the maximal duration flocks in polynomial delay. This approach uses a depth-first
search (DFS) to check all time instants for a particular trajectory to find all-maximal duration flocks.

All aforementioned methods were designed to work offline (i.e. they are limited to historical data
sets). The landmark online approach was presented by Vieira et al. [2009] as it was the first to propose
algorithms for detecting flock patterns in streaming data using only spatiotemporal search techniques.
Vieira et al. proposed a set of online algorithms, which are considered the state-of-art solution for
reporting flock patterns with fixed time duration. All these algorithms are based in a common one,
called BFE (Basic Flock Evaluation). In this article we propose a new online base algorithm to
report fixed size flock patterns that employ the premises of BFE improved with the plane sweeping
technique, binary signatures and inverted indexes. Our proposed method consistently outperforms
BFE, as shown in Section 5, while it can handle both historical and streaming spatiotemporal data.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

56 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

h

h

h

x

y

pn

p1

p2

p3

p4

p5

p6

pn-1

...

(a) (b)

Fig. 2. (a) Disks for {p1, p2} such that d(p1, p2) ≤ ε. (b) Application of plane sweeping technique to find closest pair.

3. FUNDAMENTAL CONCEPTS

3.1 Basic Flock Evaluation Algorithm

When searching for flock patterns there may have infinite possible spatial locations to place disk
centers in a time instant. This makes the task of finding candidate disks very challenging. In order
to overcome this problem, Vieira et al. [2009] introduced a theorem that reduces the search space to
finding candidate flock disks as follows.

Theorem 3.1. If for a given time instance ti there exists a point in the space ctik such that, ∀Tj ∈
fk, d(ptij , c

ti
k) 6 ε/2, then there exists another point in the space c′tik such that d(ptij , c

′ti
k) 6 ε/2 and

there are at least trajectories Ta ∈ fk and Tb ∈ fk such that ∀Tj ∈ {Ta, Tb}, d(ptij , c
′ti
k) = ε/2.

Theorem 3.1 states that if there is a disk with center ctik and diameter ε that covers all trajectories
in a flock fk, then there is another disk with different center c′tik that also covers all the trajectories
of fk. This theorem affects considerably the search space for flock patterns as it limits the locations
inside the spatial domain where it is necessary to search for flocks. For a data set of |T | trajectories,
there are |T |2 possible combinations of pairs of points in a time instant. For each pair there are (at
most) two disks with radius ε/2 that have these two points in their circumferences (Figure 2(a)).

Based on Theorem 3.1, Vieira et al. [2009] proposed the Basic Flock Evaluation (BFE) algorithm.
This algorithm is the simplest among all five presented in that paper. The other four algorithms
enhance the BFE algorithm with different heuristics to, potentially, speed up their running time. In
summary, the BFE algorithm operates in the following three steps:

(1) Find flock disks: this step generates a set of candidate disks, where each disk defines a flock
pattern. For each time instant, this step searches for pairs of points that qualify to generate disks.
Since this step has a running time of O(n2) (i.e., all possible pairs of point combinations at any given
time instance), BFE employs a grid-based index to speed up the candidate disks and flock detection.
The grid-based index is based on fixed-size cells of ε distance. Each object in the data set is mapped
to one cell in the index based on the objects’ locations, thus the index size and performance depend
on the spatial distribution of the data set. In the search phase, each cell gx,y is evaluated to find pairs
of points that are within ε distant to each other. To find pairs of points, each point in cell gx,y is
matched to every other point located in cell gx,y, as well as points in the nine adjacent cells to cell gx,y
(i.e., cells that may have points within ε distance to the point being evaluated). Each pair of points
within ε distance is used to compute (at most) two disks whose circumferences intersect exactly in the
pair of points. Afterwards, the algorithm simply counts the number of points within the disks, and
then filtering out disks with less than µ entities;

(2) Filter candidate disks: since the first step finds all flock disks in a particular time instant,
the second step is to keep only disks containing maximal sets of trajectories. A naive approach to
select maximal sets is to compare every possible pair of disks. However, this approach has running

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 57

time quadratic to the number of disks, without considering computational expensive set intersection
operations. In order to avoid set intersection operations, BFE only compares pair of disks that
intersects each other in the space domain;

(3) Set join between consecutive timestamps: the result from the second step is a set of
flocks for one time instant. Thus, in order to find pattern flock with a time duration, the result set
has to be “merged” with results from previous time instant. Different from the previous step, joining
sets between consecutive timestamps cannot employ topological relations to reduce the search space.
Therefore, this last step is computationally expensive when joining very large sets. After the joining
phase, the results that could not be joined are discarded, and the ones with lifespan of δ are reported
as flocks. The current “active” flocks (valid until the current timestamp) are maintained and further
used in the next iteration (step 1 for the next timestamp).

3.2 Plane Sweeping Technique

The plane sweep technique was first introduced to detect intersection between line segments in the
plane [Shamos and Hoey 1976]. Since then, this technique has proven to be important to reduce
computational complexity in a large variety of problems, mainly in the computational geometry area.
The main idea of plane sweeping is to use a “sweeping line” (generally vertical) throughout the plane,
i.e., scanning the plane from left-to-right in x-axis. The “sweeping” process continues until a condition
is met (e.g., line intersects with a point). Whenever this event happens, then geometric operations
are performed on the points that prompted the event. Note that the operations are performed on
a reduced set of points closer to the sweeping line. This process of sweeping ends when all data set
points are swept by the line.

In order to further understand the technique consider the problem of finding the pair of points that
is closest. This problem can be solved with a naive approach in O(N2), but with the help of plane
sweeping it can be solved in O(N. log(N)). The following algorithm was taken from [Hinrichs et al.
1988]. To identify the closest pair it is used a band instead of a line (see Figure 2(b)). Suppose that
the algorithm already processed N−1 points of the input (ordered by x-axis) and the shortest distance
between consecutive points found so far is h. The algorithm processes the last point pn and try to
find a point that is closer to it than h. It maintains a set of all the points processed that are within
a range of h in x-axis of the point pn (red rectangle in the Figure 2(a)). Every time a new point is
processed, it is added to the set, and the set is destroyed every time we jump to other point or the
value of h changes. This set is ordered by the y coordinate and a balanced binary tree can be used
to maintain this set, and accounts for the log(N) factor. The algorithm only considers the points in
the range pn.y − h to pn.y + h (those inside the blue rectangle in Figure 2(b)). In order to check if
a point is at a distance less than h from the point pn, it just checks those points that are elements
of the balanced tree. It follows that the search for each of the N points the complexity of the search
is log(N), hence the algorithm has the total complexity of O(N. log(N)). In our work we use plane
sweeping technique in a similar fashion to the closest-pair problem, as detailed in the next section.

4. METHOD PSI: PLANE SWEEPING, SIGNATURES AND INDEXES

This section presents our proposed method PSI, which stands for Plane sweeping, Signatures and
Indexes for online discovery of fixed time duration flock patterns. It employs the plane sweeping
technique and binary signatures to improve the search for disks on a specific timestamp. PSI also
relies on inverted indexes in the spatiotemporal join phase to reduce the number of set intersection
operations.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

58 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

Algorithm 1: Find candidate disks with plane sweeping technique
Input: T [ti]: positions in timestamp ti, sorted by x-axis values, ε: flock diameter, µ: minimum size of flock
Output: C: candidate disks for timestamp ti, B: active boxes in timestamp ti

1 C ← ∅, B ← ∅
2 foreach pr ∈ T [ti] do // analyze elements in increasing x-values
3 P ← ∅ // list of elements of current box defined by pr
4 foreach ps ∈ T [ti] : | ps.x− pr.x | 6 ε do // test only elements inside 2ε x-band
5 if |ps.y − pr.y| 6 ε then // check if ps is inside 2ε y-band
6 P ← P ∪ ps // add element ps to box
7 foreach p ∈ P : p.x > pr.x do (// elements inside right half of box
8 if dist(pr, p) 6 ε then // calculate pair distance
9 let {c1, c2} be disks defined by {pr, p} and radius ε/2

10 foreach c ∈ {c1, c2} do
11 if |c ∩ P| > µ then // check the number of entries in disk
12 C ← C ∪ c // add c to candidate disks
13 B ← B ∪ box(pr) // add box to active boxes
14 return C,B

4.1 Plane Sweep-based Disk Detection

As previously described, the BFE algorithm (and its extensions) first constructs a grid-based index and
then generates candidate disks for each timestamp. This process of building and searching the index
can be time consuming. Thus, to reduce this cost we propose a new approach based on plane sweeping
to find flock disks without index construction. Our proposed approach is described in Algorithm 1.

Algorithm 1 first sweeps the plane (from left to right in x-axis) using a band of size 2ε along the
x-axis centered at a point pr (red box in Figure 3(a)). The algorithm selects all the points inside the
band that are in the range [pr.y − ε, pr.y + ε] (blue box in Figure 3(a)). These steps are presented in
lines 4–6 of Algorithm 1.

After selecting the points in the 2ε × 2ε box defined by pr, we then check for pairs of points that
qualify for new flock disks (refer to Theorem 3.1). Thus, we generate disks defined by pr and any
point p inside the right half of box such that the distance between pr and p is at most ε (yellow-dashed
semicircle in Figure 3(b)). Points in the left half of box were checked in previous steps. If a candidate
disk contains at least µ entities inside it, then the underlying entity set is reported as a candidate set
and the box is set active in the timestamp. Every active box is represented through the Minimum
Bounding Rectangle (MBR) enclosing its elements (dashed/dotted rectangles in figures). These last
steps are represented by lines 7–13 of Algorithm 1.

x

y

pr1

Sweeping (p1)

x

y

c2

p

c1

pr1

Sweeping (p1)

x

y

c4

p

pr2

MBR1

c3

MBR2

Sweeping (p2)

(a) Sweep plane across x-axis. (b) Filter points in y-axis. (c) Check for subsets in the boxes.

Fig. 3. Steps needed to find disks in one timestamp.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 59

Algorithm 2: Filter out disks which are subsets
1 Algorithm FilterCandidates(B)

Input: B: active boxes of timestamp ti, sorted by x-axis values
Output: C: final set of disks for timestamp ti

2 C ← ∅
3 for j ← 0 to j 6 |B| do
4 for k ← j + 1 to k 6 |B| do
5 if IntersectsWith(B[j], B[k]) then
6 foreach c ∈ B[j].disks do
7 C ← InsertDisk (C, c)
8 else // No intersection.
9 break

10 Procedure InsertDisk(C, c)
Input: C: set of disks, c: new disk

11 foreach d ∈ C do
12 if c.sign ∧ d.sign = c.sign && dist(c, d) 6 ε then // c can be a subset of d
13 if d ∩ c = c then // Remove chance of false-positive
14 return C // No need to insert c

15 else if c.sign ∧ d.sign = d.sign then // d can be a subset of c
16 if c ∩ d = d then // Remove chance of false-positive
17 C ← C \ d // Remove d

18 return C ∪ c

4.2 Signature-based Candidate Set Filtering

The next step after detecting the candidate sets of a particular timestamp is to check for disks that
are subsets or supersets. Similar to BFE algorithm, we are interested in finding only maximal sets
of flocks. The BFE algorithm uses only spatial properties of disks to accelerate the maximal set
detection. Here we employ a different approach: we use spatial properties of boxes (before using
properties of disks as in BFE) and binary signatures to prune subsets without executing (expensive)
set intersection operations.

The process of filtering out candidate sets is shown in Algorithm 2. The spatial relationship between
boxes is given by their MBRs. Note that although the box has dimensions of 2ε × 2ε, the MBR of
the set of objects is usually smaller (see Figure 3). Each box, as well, has information about all
candidate sets that belong to it. The step of filtering checks boxes that hold at least one candidate
set. Algorithm 2 begins by iterating on each active box (i.e., a box that has a candidate set) in the
current timestamp, and checks if there is intersection between the MBR of a box and the MBRs of
boxes near it. In this case, it is necessary to check whether there is duplicate or subsets between these
boxes (Figure 3(c)).

Before performing the set intersection operation, we propose to apply a second filtering step using
binary signatures (lines 10–18 of Algorithm 2). As entities get inserted in a candidate set, a set of
hash functions are used to generate a signature for it. The idea of using binary signatures to accelerate
subset operations is not new. In fact, it has been used to solve the substring problem [Harrison 1971]
and is common in information retrieval [Faloutsos and Christodoulakis 1984] to the fast retrieval of
documents (known as the technique of signature files). In this work a set of Bloom filters is used to
represent subsets of a universe, and then these filters, which essentially are binary vectors, are used
to check for subsets amongst the sets. It is well-known that Bloom filters can generate false-positives,
but most importantly, no false-negatives. This is the reason that, after we check one disk is subset of
another using binary signatures, we still need to verify using set intersection whether the result is a
false-negative (lines 13 and 16 of Algorithm 2).

Set signatures are generated as follows: Starting from a zero signature (e.g., 0000 0000 0000 0000),
the resulting signature is computed by executing the hash functions in sequence for every identifier in

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

60 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

0100 0000 0000 0001
H1(1) = 1
H2 (1) = 15

H1(2) = 2
H2 (2) = 13 0110 0000 0000 0101

H1(3) = 3
H2 (3) = 3 0111 0000 0000 0101

H1(5) = 5
H2 (5) = 3 0111 0100 0000 0101

1 3

7
2

d2

1
3

2

d3

1 3

52
d1 0111 0100 0000 0101

H1([1,2,3,5])
H2([1,2,3,5])

H1([1,2,3,7])
H2([1,2,3,7])

H1([1,2,3])
H2([1,2,3])

0111 0001 0000 0101

0111 0000 0000 0101

d1∧d2 = 0111000000000101= d2 = d1 =⇒ d2⊆ d1
d1∧d3 = 0111000000000101= d3 =⇒ d3⊆ d1 ?
d2∧d3 = 0111000000000101= d3 =⇒ d3⊆ d2 ?

(a) (b)

Fig. 4. (a) Process of generating binary signatures. (b) Subset checking using signatures.

the set. Each hash function maps an object identifier to a position inside the signature (bucket) and
sets a number of 1-bit according to the given identifier. Figure 4(a) shows the step-by-step signature
generation for the set {1, 2, 3, 5} highlighting the bits set by each hash function regarding every object
identifier. In the figure, H1 and H2 refer, respectively, to the SpookyHash5 and MurMurHash6, which
are fast hashes implementations and with good non-linearity (measured by avalanche criterion7).
Note that some collisions may happen between the hash functions (bits represented in purple in
Figure 4(a)). Therefore, the ideal size of the signatures depends on the cardinality of the sets. However,
we recommend to be up to 64 bits, since we have run tests (using a 64-bit architecture, which is the
currently the “standard”) that showed that AND bitwise operations of signatures greater than this
size may suffer a performance drop.

Figure 4(b) illustrates the process of filtering through binary signatures. The idea is to avoid
performing a set intersection operation to determine if a disk is subset/superset of another disk in
case this is surely false. In order to achieve this, we apply an AND bitwise operation between the
two signatures from the disks. If the result of the operation is equal to one of the operands, and then
this operand may be a subset of the other. Otherwise, we can surely say that no disk is a superset
of the other. In Figure 4(b), the set intersection between d1 and d2 is avoided as none of these sets
is a subset of the other according to the signature checking. However, as this approach is subject
to false positives, it is necessary to perform a set intersection operation as a post-processing step
regarding d1, d3 and d2, d3. Nevertheless, this step should eliminate many false-negatives depending
on the chosen hash functions. The primitives of performing subset queries using binary signatures are
described in details in [Goel and Gupta 2010].

4.3 Inverted Index-based Join Between Sets of Consecutive Timestamps

After finding all disks for a given time instant, we then need to join them with others from the
previous timestamp. A straightforward way to join disks is to process all disks from one timestamp
with the other timestamp, and then check for the joining condition (i.e., if two disks have at least µ
objects in common). However, this process is computationally costly since we have to perform, for
each timestamp, set intersection operations for all candidates of a timestamp with all the maintained
flocks of the previous one. Instead, here we propose the use of inverted indexes to speed up the step
of joining disks across two consecutive timestamps.

Inverted index is a well-known method employed to index documents and then efficiently search for
terms in the index [Zobel and Moffat 2006]. Usually, an inverted index has a list of keys that are the

5burtleburtle.net/bob/hash/spooky.html
6Murmurhash 2.0: sites.google.com/site/murmurhash
7floodyberry.com/noncryptohashzoo

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 61

2

3

6

8 9

7
5

c
1

c
3

c
4

c
2

c
current

t
i-1

t
i

1
4

5

4

2

10

Current disk: {2,4,5}
List2 List4 List5 = {c1,c4}

Inverted index of disks of ti-1

OID Disks
1 {c1, c2}
2 {c1, c2, c4}
3 {c1, c2, c3}
4 {c1, c3, c4}
5 {c1, c3, c4}

...

Fig. 5. Joining disks/sets between consecutive timestamps using an inverted index (µ = 3).

Dataset Positions Objects µ ε δ

Cars 134,264 183 4, 6, . . . , 20 [5] 0.4, 0.5, . . . , 1.1 [0.6] 4, 6, . . . , 20 [10]
Buses 66,096 145 4, 6, . . . , 20 [5] 0.3, 0.4, . . . , 1.0 [0.7] 4, 6, . . . , 20 [10]
Trucks 112,203 276 4, 6, . . . , 20 [5] 0.7, 0.8, . . . , 1.4 [0.9] 4, 6, . . . , 20 [10]
Caribous 15,796 43 2, 3, . . . , 10 [5] 0.1, 0.2, . . . , 0.8 [0,7] 4, 6, . . . , 20 [10]
SG 2,548,084 50,000 4, 6, . . . , 20 [5] 2.2, 2.6, . . . , 5.0 [3.0] 4, 6, . . . , 20 [10]

Table I. Number of objects, amount of positions and tested values for each parameter of the pattern.

common terms appearing in all the documents. Each item, in turn, has a set of document identifiers
where the term represented by that item appeared. In our particular problem, an inverted index is
employed to search disks from previous timestamp (ti−1) that have at least µ object in common with
the disk being processed of current timestamp (ti) (see Figure 5). When a current disk from ti is
processed, we use the set of OIDs that belongs to the disk as the query elements to the inverted index.
The query condition is that a document (or disk) is returned if it has at least µ terms (or objects) in
common with the query set. In the figure, disks c1 and c4 compose the query answer.

Now, suppose we have n ∈ N disks in ti−1 and m ∈ N in ti, and the average number of objects in
each disk is l; l ∈ N, l > µ. If we have to compare all disks from ti with the ones in ti−1, then we have
a time complexity of O(n.m.l). However, our approach can drastically reduce this time complexity in
most cases, as shown in the experimental evaluation.

5. EXPERIMENTAL EVALUATION

In order to verify the efficiency of our proposed PSI method, we performed an extensive experimental
evaluation with several real-world spatiotemporal datasets and one synthetic dataset. The datasets
employed in our experiments are: Trucks, Buses, Cars, Caribous and SG. Trucks dataset has 112,203
GPS locations generated by 276 moving trucks, while Buses has 66,096 locations generated by 145
buses, both of them were collected in the metropolitan area of Athens, Greece8. Cars contains 134,264
locations collected from 183 private cars moving in Copenhagen, Denmark9. Caribous is generated
from the migration movements of 43 caribous in northwest states of Canada, with a total of 15,796
locations. Lastly, to test the scalability of the methods in this article we used the synthetic dataset
SG which has 2,548,084 positions generated by the movement simulation of 50 thousand vehicles in
Singapore road network. All datasets are as provided by their owners, except by some conversions
between coordinate systems. Some of the datasets have missing data, i.e., one entity appears in
timestamp t disappears in t+1 and reappears in t+2. Whenever this situation happens flock patterns
will decompose. Table I presents a summary of the datasets and the tested ranges for the flock pattern
parameters regarding each one (defaults inside brackets).

8chorochronos.datastories.org/
9www.daisy.aau.dk

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

62 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

We used the BFE as baseline approach, which is the base implementation described in [Vieira et al.
2009]. As PSI improves BFE using three techniques, we tested different versions of BFE and PSI to
evaluate which technique works better in which conditions. We also compare our proposed approach
with an online version based on the LCM_Flock algorithm [Romero 2011]. The online LCM_Flock
algorithm partitions the data domain in the time dimension in δ-window slices. Each of these slices
is then handled as the input dataset for the original (offline) LCM_Flock algorithm, which reports
the answers found in each window. In summary, we performed experiments with the following six
methods:

(1) BFE: The original BFE algorithm;
(2) LCM: The online version of the LCM_Flock algorithm;
(3) BFI: BFE with inverted index to join disks;
(4) PSW: BFE with plane sweeping method (grid-based index is absented);
(5) PSB: PSW (as described above) with binary signatures to accelerate the step of finding subsets

in a timestamp;
(6) PSI: PSB with inverted index to prune candidates across subsequent timestamps.

We implemented and tested all methods in C++ with GCC v4.9, using an Intel Core 2 Quad@2.83GHz
CPU, 4GB@1333MHz RAM and 500GB@3Gb/s HDD.

5.1 Overall Analysis

Figure 5.1 shows the experimental results regarding all datasets varying values for the parameters µ, ε
and δ (according to Table I). All plots show the total running time (in seconds) needed to evaluate the
entire dataset. Plots for Caribous and SG are in logarithmic scale. Additionally, the charts for the SG
dataset do not include the online LCM_Flock algorithm due to disk thrashing. This algorithm keeps
in memory all candidates generated in the whole δ-window, which made it unfeasible to be executed
using the dataset SG in our test machine as the number of candidate disks generated in a timestamp
of this dataset is up to 1.26 × 106. The algorithm demanded excessive swap usage, therefore we did
not make a direct wall clock time comparison to avoid being biased by the test machine.

In general, we achieved better results with the techniques employed by the PSI method. This is
due the fact the BFE method needs to build a grid-based index before actually starting the search
for disks. Another observation from the results is that as we increase µ, or decrease δ, the running
time required to report flock patterns decreases. This behavior is expected, since the parameters of
flock patterns become more selective and, thus, the bookkeeping costs related to maintain candidate
sets reduce. However, as ε decreases, the running time required by PSI variants always decrease while
the running time of BFE and BFI decreases until an optimal value and regrows below it (see figures
5.1(b) and 5.1(e)). This behavior is explained by the fact the grid-based index is highly dependent on
the spatial data distribution. BFE is less efficient when the data is skewed concerning the given ε. In
most situations, the online LCM_Flock algorithm was significantly slower than our method. It was
the best only when the data is dense regarding a value of ε (see figures 5.1(b) and 5.1(h)). This occurs
due to the way LCM_Flock performs the join of candidate disks in consecutive timestamps. In this
algorithm the set intersection operations, which are very expensive, are not necessary. Hence, when
the number of disks begin to increase excessively in each timestamp the underlying itemset miner
algorithm LCM [Uno et al. 2005] begins to counterbalance the combined costs of translation of the
trajectories to transactions and of bookkeeping all the candidate disks that it requires.

In particular, in the datasets Caribous and SG we see that when increasing µ values, the use of the
plane sweeping technique has a bigger impact on performance than in the other datasets, being up
to more than two orders of magnitude faster than using the grid index. This is due to the relatively
reduced numbers of flocks that were found in those datasets. Caribous has only 43 objects whose are

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 63

LCM BFI PSB
BFE PSW PSI

Legend:

(a) Cars – varying µ (b) Cars – varying ε (c) Cars – varying δ

 0

 2

 4

 6

 8

 10

 12

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

µ

 0

 20

 40

 60

 80

 100

 120

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
T

o
ta

l
T

im
e
 (

s)

ε

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

δ

(d) Buses – varying µ (e) Buses – varying ε (f) Buses – varying δ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

µ

 0

 2

 4

 6

 8

 10

 12

 14

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
o

ta
l

T
im

e
 (

s)

ε

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

δ

(g) Trucks – varying µ (h) Trucks – varying ε (i) Trucks – varying δ

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

µ

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

T
o

ta
l

T
im

e
 (

s)

ε

 20

 30

 40

 50

 60

 70

 80

 90

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

δ

(j) Caribous – varying µ (k) Caribous – varying ε (l) Caribous – varying δ

 0.01

 0.1

 1

 10

 100

2 3 4 5 6 7 8 9 10

T
o

ta
l

T
im

e
 (

s)

µ

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l

T
im

e
 (

s)

ε

 0.01

 0.1

 1

 10

 100

4 6 8 10 12 14 16 18 20

T
o

ta
l

T
im

e
 (

s)

δ

(m) SG – varying µ (n) SG – varying ε (o) SG – varying δ

 1⋅10
0

 1⋅10
1

 1⋅10
2

 1⋅10
3

 1⋅10
4

 1⋅10
5

4 6 8 10 12 14 16 18

T
o

ta
l

T
im

e
(l

o
g

(s
))

µ

 1⋅10
2

 1⋅10
3

 1⋅10
4

 1⋅10
5

 1⋅10
6

2.20 2.60 3.00 3.40 3.80 4.20 4.60 5.00

T
o

ta
l

T
im

e
(l

o
g

(s
))

ε

 1⋅10
3

 1⋅10
4

 1⋅10
5

4 6 8 10 12 14 16 18

T
o

ta
l

T
im

e
 (

s)

δ

Fig. 6. Experiments with Cars (1st row), Buses (2nd row), Trucks (3rd row), Caribous (4th row) and SG (5th row)
datasets when varying µ (cardinality - 1st column), ε (distance diameter - 2nd column) and δ (time duration - 3rd
column).

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

64 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

dataset Defaults µ ε δ
(µ, ε, δ) Min Max Min Max Min Max

Cars 1295 2598 0 203 5940 3906 319
Buses 319 787 20 36 1666 1247 34
Trucks 4926 5708 104 3741 15607 9934 756
Caribous 0 5063 0 0 150 20 0
SG 144 975 0 53 741 270 69

Table II. Total number of answers for each dataset regarding parameter’s defaults and limits.

spatially disperse, thus only a few flocks are found. Conversely, the SG dataset has 50,000 objects
however only few locations per object (51 in the average), resulting in few flocks as well. This can be
verified looking at the number of answers found for those datasets (see Table II).

Further analyzing the results, we conclude that the PSI method achieved the best performance.
The impact of binary signatures in execution time was not expressive, since both BFE and PSI are
optimized to use spatial properties of disks/boxes, and thus they avoid performing unnecessary set
intersection operations. This is the main reason we did not include the results for using binary
signatures with BFE as they promote almost no gain in performance. On the other hand, while
employing an inverted index yielded a reasonable improvement regarding real datasets, especially
when varying δ (see plots in the third column of Figure 5.1); it was crucial for PSI in the synthetic
dataset, where PSW and PSB performed worse than BFE and BFI for low values for µ including the
default. The main reason PSI outperformed the other methods in SG dataset is the high amount
of disks pruned using inverted index (up to 1.8 × 1011 out of 3.4 × 1011), as there are many flock
candidates per timestamp due to the number of objects in the dataset but only a few of them remain
alive across timestamps.

5.2 Impact of Data Skewness

One of the hurdles of searching flock patterns is that as we “relax” the parameters the number of
candidate disks increase very fast as well. That is, when the value of ε is excessively high or the value
of µ is very low the number of candidates becomes large and the performance of the methods starts
to worsen (see first and second columns of Figure 5.1). The reason is that those disks have to be
maintained over time and are subject of costly set operations as well. This scenario is valid for both
algorithms using grid index and those based on plane sweeping. Nevertheless, as the disk diameter (ε)
decreases the methods using grid index and LCM_Flock demand growing time to execute while the
plane sweeping-based algorithms became faster and faster. When data is skewed concerning the given
ε, BFE is less efficient for two main reasons. First, the index is big, taking more time to be constructed
and traversed. Second, less computations can be saved during the process of sliding through grid cells
as the amount of overlap between subsequent cells is smaller than when data is dense. The methods
using plane sweeping do not suffer from data skewness as they first check if the boxes are capable
of generating disks and only then the disks are calculated. Regarding LCM_Flock, the performance
degrades due to the high number of transactions.

However, for large values of ε PSI becomes slower, being even worse than concurrents. This could
be noticed in Cars and Trucks datasets (figures 5.1(b) and 5.1(h), respectively), however it may occur
in other datasets for values larger than we tested. The reason for this result is that in LCM_Flock
the frequent pattern mining underlying method is faster than the spatial-based approaches employed
by the other algorithms. Regarding BFE, when the disks diameter increases the number of cells in the
grid-based index used is reduced, which makes its performance to be more efficient than the point-
by-point approach of the plane sweeping technique. We limit the topmost ε to a value having spatial
semantics, as flocks having entities excessively apart from one another are meaningless in practice.
For instance, in Caribous the value ε = 0.02 is approximately equivalent to 2km.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 65

(a)

(b)

(c)

(d)

Fig. 7. Positions of the datasets Caribous, Cars, Trucks and SG 50K for a single time instance.
Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

66 · P. S. Tanaka, M. R. Vieira and D. S. Kaster

From the results presented it is possible to conclude that when the number of candidate flocks per
timestamp decreases the total number of boxes is drastically reduced by PSI, improving its perfor-
mance. This is an interesting achievement because in many situations flock patterns are really outliers
when analyzing moving objects. Therefore, regarding data distribution, PSI and its variants perform
better in sparse data. Figure 7 presents datasets’ distribution in a given timestamp. Figure 7(a) shows
a time instance of the dataset Caribou with a grid superimposing it. This grid has square cells with
0.2 of side. One can note that the data distribution in this data collection is diffuse, which lead to
BFE underperform in relation to the plane sweeping algorithms. For this dataset, when the distance
is too small it is necessary to create a large number of cells in the grid index. On the other hand,
algorithms that use plane sweeping create boxes which are only kept if there are at least µ entities,
this way the actual search space is considerably reduced when compared with the methods using the
grid index. Figures 7(b) and 7(c) show the distribution of datasets Cars and Trucks, respectively.
These datasets are relatively dense and when we apply a grid with a reasonable large value of ε over
the data is possible to see entities grouped inside a few grid cells. When data follows this kind of
packed distribution (along the y-axis, in Cars) there is a considerably high chance of the candidate
boxes in the plane sweep to generate candidate disks. Therefore, the box generation step ends up
being an overhead while searching for candidate disks degrading the overall performance, as showed
afore in the figures 5.1(b) and 5.1(h). Finally, in the SG dataset we can observe that the behavior
of the methods PSW and PSB changed considerably, being worse than BFE and BFI. This is due
the fact that this dataset has a high density of objects (much more dense than Cars) and the radius
of the parameter is set to a quite high value in order to return answers. The combination of these
situations causes the method to underperform in relation to the methods using the grid index for the
same reasons presented before. Nonetheless, PSI was still the best as it pruned a lot of candidate
disks that did not live across the pattern time window.

6. CONCLUSION

The broad usage of location devices has aroused the interest in studying patterns that portray collab-
orative behaviors in spatiotemporal data (e.g., groups, swarm, flocks). Related works have focused on
the problem of finding maximal duration flocks or providing off-line solutions to report flock patterns
with fixed time duration. Nevertheless, several real-world applications demand online solutions to
this problem. In this work we proposed the application of plane sweeping technique to accelerate the
process of finding candidate disks in a timestamp. Next, we employed the use of binary signatures
and inverted index to reduce the amount of set operations necessary to detect flocks. Our extensive
experimental evaluation showed considerable speedups compared to existing approaches. We also
discussed how data skewness impacts the performance of different flock discovery algorithms.

Future work include applying all the techniques/improvements of this article in the heuristics pro-
posed by Vieira et al. [2009] to verify the gain in performance. After the employment of the techniques
over the four heuristics there will be at least nine algorithm variations. This is a huge number of al-
gorithms for the user to select the most adequate one. In order to make this selection process easier
we want to develop a algorithm/method chooser based on the data distribution and performance in
partials of the input data set. Other possible future extension could be related to handling missing
data. Currently, whenever an object helping to form a flock disappear for even one timestamp the
flock is dismantled, therefore not reported. The base algorithm to merge candidate disks could be
modified in order to keep disks from more previous timestamps instead of only one, and then check
the new flocks against those disks.

REFERENCES

Al-Naymat, G., Chawla, S., and Gudmundsson, J. Dimensionality Reduction for Long Duration and Complex
Spatio-temporal Queries. In Proceedings of the ACM Symposium on Applied Computing. Seoul, Korea, pp. 393–397,
2007.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

An Improved Base Algorithm for Online Discovery of Flock Patterns in Trajectories · 67

Arimura, H., Takagi, T., Geng, X., and Uno, T. Finding All Maximal Duration Flock Patterns in High-dimensional
Trajectories. http://www-ikn.ist.hokudai.ac.jp/~arim/papers/maxlenflock201404r4.pdf, 2014.

Benkert, M., Gudmundsson, J., Hübner, F., and Wolle, T. Reporting Flock Patterns. In Y. Azar and T. Erlebach
(Eds.), Algorithms - ESA 2006. Lecture Notes in Computer Science, vol. 4168. Springer, pp. 660–671, 2006.

Benkert, M., Gudmundsson, J., Hübner, F., and Wolle, T. Reporting Flock Patterns. Computational Geome-
try 41 (3): 111–125, 2008.

Bingham, E. and Mannila, H. Random Projection in Dimensionality Reduction: applications to image and text
data. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Francisco,
USA, pp. 245–250, 2001.

Faloutsos, C. and Christodoulakis, S. Signature Files: An Access Method for Documents and Its Analytical
Performance Evaluation. ACM Transactions on Information Systems 2 (4): 267–288, 1984.

Geng, X., Takagi, T., Arimura, H., and Uno, T. Enumeration of Complete Set of Flock Patterns in Trajectories. In
Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
Dallas, USA, pp. 53–61, 2014.

Goel, A. and Gupta, P. Small Subset Queries and Bloom Filters using Ternary Associative Memories, with Appli-
cations. In Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems.
New York, USA, pp. 143–154, 2010.

Gudmundsson, J., Laube, P., and Wolle, T. Movement Patterns in Spatio-temporal Data. In Encyclopedia of GIS,
Shekhar, Shashi and Xiong, Hui (Ed.). Springer US, Boston, USA, pp. 726–732, 2008.

Gudmundsson, J. and van Kreveld, M. Computing Longest Duration Flocks in Trajectory Data. In Proceedings
of the ACM International Symposium on Advances in Geographic Information Systems. Arlington, USA, pp. 35–42,
2006.

Gudmundsson, J., van Kreveld, M., and Speckmann, B. Efficient Detection of Motion Patterns in Spatio-temporal
Data Sets. In Proceedings of the ACM International Workshop on Geographic Information Systems. Washington,
USA, pp. 250–257, 2004.

Harrison, M. C. Implementation of the Substring Test by Hashing. Communications of the ACM 14 (12): 777–779,
1971.

Hinrichs, K., Nievergelt, J., and Schorn, P. Plane-sweep Solves the Closest Pair Problem Elegantly. Information
Processing Letters 26 (5): 255–261, 1988.

Jeung, H., Yiu, M. L., Zhou, X., Jensen, C. S., and Shen, H. T. Discovery of Convoys in Trajectory Databases.
Proceedings of the VLDB Endowment 1 (1): 1068–1080, 2008.

Laube, P. and Imfeld, S. Analyzing Relative Motion within Groups of Trackable Moving Point Objects. In M. J.
Egenhofer and D. M. Mark (Eds.), Geographic Information Science. Lecture Notes in Computer Science, vol. 2478.
Springer, pp. 132–144, 2002.

Li, X., Ceikute, V., Jensen, C. S., and Tan, K. Effective Online Group Discovery in Trajectory Databases. IEEE
Transactions on Knowledge and Data Engineering 25 (12): 2752–2766, 2013.

Li, Z., Ding, B., Han, J., and Kays, R. Swarm: Mining Relaxed Temporal Moving Object Clusters. Proceedings of
the VLDB Endowment 3 (1): 723–734, 2010.

Romero, A. O. C. Mining Moving Flock Patterns in Large Spatio-temporal Datasets using a Frequent Pattern Mining
Approach. Ph.D. thesis, University of Twente, The Netherlands, 2011.

Rosero, O. E. C. and Romero, A. O. C. Performance Analysis of Flock Pattern Algorithms in Spatio-temporal
Databases. In Proceedings of the Conferencia Latinoamericana en Informática. Montevideo, Uruguay, pp. 1–6, 2014.

Shamos, M. I. and Hoey, D. Geometric Intersection Problems. In Proceedings of the Annual Symposium on
Foundations of Computer Science. Houston, USA, pp. 208–215, 1976.

Tanaka, P. S., Vieira, M. R., and Kaster, D. S. Efficient Algorithms to Discover Flock Patterns in Trajectories.
In Proceedings of the Brazilian Symposium on Geoinformatics. Campos do Jordão, Brazil, pp. 56–67, 2015.

Turdukulov, U., Calderon Romero, A. O., Huisman, O., and Retsios, V. Visual Mining of Moving Flock Pat-
terns in Large Spatio-temporal Data Sets using a Frequent Pattern Approach. International Journal of Geographical
Information Science 28 (10): 2013–2029, 2014.

Uno, T., Kiyomi, M., and Arimura, H. LCM Ver.3: Collaboration of Array, Bitmap and Prefix Tree for Frequent
Itemset Mining. In Proceedings of the International Workshop on Open Source Data Mining: frequent pattern mining
implementations. New York, USA, pp. 77–86, 2005.

Vieira, M. R., Bakalov, P., and Tsotras, V. J. On-line Discovery of Flock Patterns in Spatio-temporal Data. In
Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
Seattle, USA, pp. 286–295, 2009.

Wang, Y., Lim, E., and Hwang, S. Efficient Mining of Group Patterns from User Movement Data. Data & Knowledge
Engineering 57 (3): 240–282, 2006.

Zobel, J. and Moffat, A. Inverted Files for Text Search Engines. ACM Computing Surveys 38 (2): 1–56, 2006.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

